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Abstract.  In recent years statistical word alignment models have been widely 
used for various Natural Language Processing (NLP) problems. In this paper 
we describe a platform independent and object oriented implementation (in 
Java) of a word alignment algorithm. This algorithm is based on the first three 
IBM models. This is an ongoing work in which we are trying to explore the 
possible enhancements to the IBM models, especially for related languages like 
the Indian languages. We have been able to improve the performance by 
introducing a similarity measure (Dice coefficient), using a list of cognates and 
morph analyzer. Use of information about cognates is especially relevant for 
Indian languages because these languages have a lot of borrowed and inherited 
words which are common to more than one language. For our experiments on 
English-Hindi word alignment, we also tried to use a bilingual dictionary to 
bootstrap the Expectation Maximization (EM) algorithm. After training on 7399 
sentence aligned sentences, we compared the results with GIZA++, an existing 
word alignment tool. The results indicate that though the performance of our 
word aligner is lower than that of GIZA++, it can be improved by adding some 
techniques like smoothing to take care of the data sparsity problem. We are also 
working on further improvements using morphological information and a better 
similarity measure etc. This word alignment tool is in the form of an API and is 
being developed as part of Sanchay, (a collection of tools and APIs for NLP 
with focus on Indian languages). 

Keywords: Word alignment, statistical machine translation, IBM models, Java, 
Indian languages, cognates, Sanchay. 

1. Introduction 

Bilingual word alignment is the first step of most current approaches to Statistical 
Machine Translation or SMT [3]. Most of the SMT systems usually have two stages. 
The first stage is called language modeling. One simple and very old but still quite 
useful approach for language modeling is n-gram modeling. Separate language 
models are built for the source language (SL) and the target language (TL). For this 
stage, monolingual corpora of the SL and the TL are required. The second stage is 



called translation modeling and it includes the step of finding the word alignments 
induced over a sentence aligned bilingual (parallel) corpus. This paper deals with the 
step of word alignment, which is sometimes extended to phrase alignment. 

The paper is structured as follows. In Section-1.1 we discuss how generative 
models can still be useful, especially for resource scarce languages. Section-1.1 
briefly describes the extensions added to the IBM models. In Section-1.3 we relate 
IBM models and possible extensions to them with Indian languages. Section-2 
describes some related work. Section-3 compares our implementation with GIZA++. 
Some of the problems of word alignment are discussed in Section-4. Word alignment 
parameters (for IBM models) are described in Section-5. The modified EM algorithm 
is presented in Section-6. Data and methodology for evaluation are presented in 
Section-7. In Section-8, we present some experimental results. In Section-9, we 
comment on the results. Finally, Section-10 lists some conclusions and some of the 
planned work for future. 

1.1 Generative Models could still be Useful 

Most current SMT systems [19, 11] use a generative model for word alignment such 
as the one implemented in the freely available tool GIZA++ [16]. GIZA++ is an 
implementation of the IBM alignment models [2]. These models treat word alignment 
as a hidden process, and maximize the probability of the observed (e, f) sentence pairs 
using the Expectation Maximization (EM) algorithm, where e and f are the source and 
the target sentences. 

Recently a number of discriminative (as against generative) word alignment 
models have been proposed. However these early models are typically very 
complicated, with many proposing intractable problems which require heuristics for 
approximate inference [13, 17]. These discriminative models need to have more 
features to reach the performance of generative models. At the same time 
discriminative models needs annotated parallel corpora along with some linguistic 
resources. Discriminative models are more easily applicable to European and English 
languages (in practical terms) due to the availability of annotated corpora and 
linguistic resources to induce the features. But this is not true for Indian languages 
since most of the languages do not have annotated corpora and linguistic resources 
developed. Most of these languages do not have a good enough POS tagger to get the 
POS feature. 

In fact, some more recent discriminative models are actually using the results 
obtained from IBM models as separate features and have achieved an increase in 
performance. This shows that, in spite of their limitations, generative models are still 
useful for a variety of reasons and attempts to improve them could be a fruitful 
exercise. 

1.2 Extending the IBM Models 

It is in this context that this paper presents an extended generative method based on 
the IBM word alignment models. One of the extensions is using a statistical similarity 



measure along with the IBM translation parameters to reduce the number of 
inappropriate alignments. Currently we use the Dice coefficient [5] as the similarity 
measure to boost the Viterbi alignment so that the search time is reduced and 
precision also increases. Dice coefficient is calculated on the fly as translation 
parameters are calculated, which reduces the complication of the models as compared 
to the case when it is calculated while training. Even though the Dice coefficient 
selects word pairs from the parallel corpus which are more likely to be valid 
alignment, some highly frequent words such as ‘the’ and ‘of’ leads to lower alignment 
accuracy. This problem can be solved if we combine the Dice coefficient value of a 
particular word pair with value obtained from Viterbi alignment based on the original 
IBM models.  

1.3 IBM Models for Indian Languages 

Since most of the Indian languages have common words which are either borrowed or 
inherited [22, 23]. In this paper we will call words of both the categories ‘cognates’. 
For better word alignment of text in Indian languages, information about cognates is 
certainly needed. Note that cognates are a useful source of information even when 
aligning English with Indian languages as Indian languages have borrowed a large 
number of words from English. The cognate list used by us was prepared by using a 
method based on the Computational Phonetic Model of Scripts or CPMS [21] which 
can be used for cognate identification [22, 23]. We added the cognates list to the 
bilingual dictionary (for English-Hindi) and we used this modified dictionary for the 
initialization of EM algorithm. We also performed a preliminary evaluation on Hindi-
Bengali using the extension mentioned above (except bilingual dictionary). 

Here is an example of word alignment between an English sentence and a Hindi 
sentence. The two parallel sentences have two word pairs which are cognates:   

Fig. 1.  An example of an alignment between an English-Hindi sentence pair, blue links 
indicates alignment of cognates 

2. Related Work 

In 1991, Gale and Church [9] introduced the idea of using measures of association for 
finding translations of words based on information in parallel text. They begin by 
carrying out sentence alignment, which is the problem of determining which 
sentences are translations of each other. In fact this is a much simpler problem than 
finding the translations of words, since long sentences in one language tend to 

NULL Buddhist monks spent their retreat in the Viharas

bOddha bhikSu ye tIna maHIne vihAroM meM bitAne lage



translate as long sentences in another language, and the order in which sentences 
appear doesn’t usually change radically in a translation. 

The original K-vec algorithm proposed by Fung and Church [7] works only for 
parallel corpus and makes use of the word position and frequency feature to find word 
correspondences. K-vec uses tests of association as a similarity measure, while the 
1995 approach of Fung [6] uses Euclidean distance. Like K-vec this approach is also 
language independent and works for different language pairs. Fung and Yee [8] also 
proposed an IR approach for translating new words from non-parallel comparable 
texts. 

Ittycheriah and Roukos [10] proposed a maximum entropy word aligner for 
Arabic-English machine translation. Malouf [14] compared several algorithms for 
maximum entropy parameter estimation. Martin et al. [15] have discussed word 
alignment for languages with scarce resources. 

Most current SMT systems [19, 11] use a generative model for word alignment 
such as the freely available GIZA++ [18], which is an implementation of the IBM 
word alignment models [2] in C++. These models treat word alignment as a hidden 
process, and maximize the probability of the observed sentence pairs using the 
expectation maximization (EM) algorithm. 

Recently, a number of discriminative word alignment models have been proposed. 
Taskar et al. [25] presented a word matching model for discriminative alignment 
which they were able to achieve optimally. 

Liu et al. [13] also develop a log-linear model, based on IBM model-3. They train 
model-3 using GIZA++, and then use the model-3 score of a possible alignment as a 
feature value in a discriminatively trained log-linear model, along with features 
incorporating part-of-speech information, and whether the aligned words are given as 
translations in a bilingual dictionary. The log-linear model is trained by standard 
maximum-entropy methods. 

Moore et al. [17] proposed a discriminative framework for bilingual word 
alignment. In 2006, Phil Blunsom and Trevor Cohn [1] proposed discriminative word 
alignment with Conditional Random Fields or CRF [12]. CRF has been used for many 
NLP problems like shallow parsing [20]. They used IBM model-4 results as a 
separate feature in their model. Sriram Venkatapathy and Aravind K. Joshi [24] 
proposed a generic discriminative re-ranking approach for word alignment which 
allows us to make use of structural features effectively.  They also used IBM model-4 
results as a separate feature in their method. 

3. Comparison of Implementation with GIZA++ 

The difference between GIZA++ and our implementation is that we are using only the 
first three models and we have not implemented various techniques for optimization 
etc. (at least so far). However, we also use the Dice coefficient, a similarity measure, 
and combine it with the Viterbi approximation to EM. From practical point of view, 
our implementation is also object oriented, but it is implemented in Java, which 
makes it platform independent. The implementation is in the form of an API so that it 
can be used by other programmers. Moreover, since it will be a part of the open 



source Sanchay (a collection of tools and APIs for NLP, especially for Indian 
languages), other researchers will be able modify and extend it for developing new 
algorithms which use the IBM models in some way. Like GIZA++, our 
implementation is also language independent, perhaps more so because Java allows 
the text in various languages and encodings to be processed more easily. 

4. Problems in Word Alignment 

The initial assumption for word alignment is that we have a sentence aligned parallel 
corpus of two languages. Now, given a parallel sentence pair, we can link (align) 
words that are translations of one another. There may be a large number of possible 
alignments, but we need to find the best alignment as shown below: 

Fig. 2. An example of English-Hindi alignment  

Fig. 3. An example of English-Telugu alignment 

In approaches based on IBM models, the problem of word alignment is divided 
into several different problems. The first problem is to find the most likely 
translations of an SL word, irrespective of positions. This part is taken care of by the 
translation model. The model alone has many applications. For example, since this 
model gives probable of word translations, we can use this model to make the task of 
building a bilingual dictionary easier. The second problem is to align positions in the 
SL sentence with positions in the TL sentence. This problem is addressed by the 
distortion model. It takes care of the differences in word orders of the two languages. 
The third problem is to find out how many TL words are generated by one SL word. 
Note that an SL word may sometimes generate no TL word, or a TL word may be 
generated by no SL word (NULL insertion). The fertility model is supposed to 
account for this. The first three models corresponding to these problems form the core 
of the IBM model based generative SMT. Examples of these are shown in Figure-4. 

Unlike European languages, most of the Indian languages are morphologically rich 
and have the feature of compounding, thereby making the problem different in terms 
of SMT. When we are trying to align two European languages, we are much more 
likely to get one-to-one alignments, but when at least one of the languages is an 

Rama is a good boy

rAma acchA laDakA HE

Rama is a good boy

rAma manchI bAHiDu



Indian language, this is less likely. In other words, the problem is much harder for the 
fertility model. One-to-many or many-to-one translations are much more likely and so 
is NULL insertion. 

Since English is an SVO language and Indian languages are SOV with respect to 
the word order, alignment of word positions may also be more difficult when one 
language in an Indian language and the other is a European language, like English. 
This will make the task of the distortion model harder. But this will not be a problem 
if both the languages are Indian languages.  

Apart from compounding, tense, aspect and modality (TAM) of Indian language 
verbs also are a cause of errors in alignment. This is because the TAM information is 
distributed over several words, which causes problems for the fertility model. This is, 
in fact, one of major factors in reducing the alignment accuracy. 

However, there are some aspects which, if used properly, may allow us to get good 
accuracy with approached bases on IBM models. As mentioned earlier, Indian 
languages have a lot of borrowed and inherited words which are common to more 
than one language. Using a list of cognates or aligning cognates on the fly using better 
techniques like the ones based on the CPMS [21, 22], we can increase the accuracy of 
alignment. If a bilingual dictionary is available, we can use that to initialize the EM 
algorithm.  

Ex-1. Translation (one to one alignment):  

Ex-2. Distortion (word order) and NULL insertion (‘spurious’ words):  

Ex-3.  Fertility:  

Fig. 4. Problems in word alignment which the first three IBM models try to solve. The red links 
indicate the fertility problem due to compounding in Indian languages.  

Rama is working in LTRC

rAma LTRC meM kAma kara raHA HE

NULL Rama worked in LTRC

rAma ne LTRC meM kAma kiyA

Rama is a good boy

rAma acchA laDakA HEeka



5. Parameters for Word Alignment 

In this section we briefly describe the problem of word alignment in a formal 
notation. The problem of SMT is: Given a source sentence how do we get (generate) 
the corresponding target sentence as a translation? 

To develop a statistical machine translation system from Hindi to English, we need 
to have a model p(e | h) which estimates the conditional probability of any English 
sentence e given  the Hindi sentence h. We need to use the parallel corpus to set the   
parameters. We can find p(e | h) using the Bayes’ theorem:  

)(

)|()(
)|(

hp

ehpep
hep

 

(1)

  

Usually, a statistical machine translation system consists of two components: the 
language model p(e) and the translation model p(h | e). The language model p(e) 
could be a bigram or trigram  model, estimated from any data, i.e. parallel corpus is 
not needed to estimate the parameters. But the translation model p(h | e) has to be 
trained from a sentence aligned English-Hindi parallel corpus. The probability p(h | e) 
is the  probability that the Hindi word h is a  translation of the English word e. 

Since we are interested here in word alignment, we will focus only on computing 
p(h | e), i.e., the translation parameter, from parallel corpus. Note that there is some 
terminological ambiguity here in the sense that this bigger translation model itself 
consists of three models in the IBM model approach as described earlier: the 
translation model, the distortion model and the fertility model. We will consider these 
three (sub-)models in this section. 

The translation model uses the simple idea of co-occurrence of e and h in the 
parallel corpus:  If e and h tend to co-occur in parallel sentence pairs, they are likely 
to be translations of one another. We can also say that e and h are likely to be 
distributionally similar. 

We can calculate the translation probabilities from the word alignment 
probabilities. But we can also calculate word alignments from the translation 
probabilities. This chicken-and-egg like recursive situation is where the Expectation 
Maximization (EM) algorithm comes in. 

5.1 Model-1: Translation Parameter  

Given an English sentence e1…el and a target sentence h1…hm from the parallel 
corpus, we want to find out the best alignment a, where a is a vector a= {aj, aj+1, aj+2, 

…, am}j=1 to m. An alignment a specifies which English word each Hindi word was 
generated from. We add a spurious NULL word to the English sentence at position 0. 
Thus, there are (l + 1)m possible alignments.  



Since in model-1 word positions are not considered, the probability of alignment of 

any two positions is a constant equal to 
ml )1(
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for a particular sentence pair. The 

probability of generating a Hindi word given an English word is given as:  
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Therefore, from Bayes’ rule:  
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where p(h, a | e)  is the probability of generating a target word and an alignment 

given an English word. 

5.2 Model-2: Distortion or Alignment Parameter 

Given source and target sentence lengths l and m,  probability that jth target word is 
connected to ith source word, the distortion probability is given as D(i | j, l , m). Now, 
the probability of an alignment a, given the source word and the lengths of the source 
and target sentences is:  
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where a = {a1, … , am and aj  is the position in source sentence that aligns to the jth 
position in the target sentence, i.e., aj is i. 

Now the probability of generating a target word with alignment a, given the source 
word and the lengths of the source and target sentences can be calculated as:  
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5.3 Model-3: Fertility Parameter 

We can generate the target sentence from English sentence with the probability 
p(h, a | e). In the third model, this probability is calculated using a new parameter 
called fertility , where F(e | ) = probability that e is aligned with 

 

target 
words. Model-3 uses translation and distortion probabilities from model-2. Fertility 
probabilities are generated from the model-2 as a separate step. And we uniformly 
assign the reverse distortion probabilities R for model-3. The final translation 
parameter is generated using four these parameters after learning from the parallel 
corpus: 
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6. Expectation Maximization (EM) Algorithm for Training 

For calculating the parameters mentioned above (translation, distortion and fertility) 
we use a generative algorithm called Expectation Maximization (EM) for training. 
The EM algorithm guarantees an increase in likelihood of the model in each iteration, 
i.e., it is guaranteed to converge to a maximum likelihood estimate. 

A set of sentence aligned parallel corpus is used as the training data. Let the 
number of sentence pairs in the training data be N and the lengths of the source and 
target sentences be l and m, respectively. The translation parameter T is learned 
during training using expected translation counts tc. After training, word alignment a 
is induced from the translation parameter. Let the number of iterations during training 
be n. Then, the iterative EM algorithm corresponding to the translation problem can 
be described as:  

Step-1: Collect all word types from the source and target corpora. For each source 
word e collect all target words h that co-occur at least once with e.  

Step-2: Initialize the translation parameter uniformly (uniform probability 
distribution), i.e., any target word probably can be the translation of a source word e.  

T(h | e)  =  1/( number of co-occurring target words) (7)

  

Step-3: Iteratively refine the translation probabilities until values are good enough 

for n iterations do   

initialize the expected translation count tc to 0   

for each sentence pair (e, h) of lengths l, m do     

update the expected translation count 



    

for j=1 to m do       

set total to 0         

for i=1 to l do           

total += T(hj|ei)  

for i=1 to l do             

tc(hj|ei) += T(hj|ei)/total           

end for         

end for         

end for       

end for     

re-estimate the translation parameter values     

for each source word e do         

set total to 0         

for each target word f do           

total += tc(hj|ei)             

for each target word f do               

calculate T(hj|ei)= tc(hj|ei)/total             

end for           

end for         

end for       

end for  

After the training we will have translation probability values for source and target 
words. Since, in IBM model theory, T(hj | ei) is assumed to be independent from 
T(hj’|ei’), we can find the best alignment by looking at the individual translation 
probability values. The best alignment can be calculated in a quadratic number of 
steps equal to (l+1)×m.  

The best (Viterbi) alignment a is now given by:  

))|(max(arg],[1 jaj
m
j ehTjia
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The above EM algorithm is applied to learn the translation parameters for finding 
the correct word alignment. Similarly we can use the EM algorithm to solve the 
distortion (word order) and fertility problems by learning corresponding distortion 
and fertility parameters. 



Distortion parameters are calculated according to the source and target sentence 
lengths l, m. To get the distortion parameters we use the corresponding expected 
translation counts from model-1 for the training in model-2. After getting the 
translation and distortion parameters from the model-2 training, the best (Viterbi) 
alignment can be calculated as follows:  

))|(),,|max(arg],,,[1 iji
m
j ehTmljDmljia

 

(9)

  

This can be calculated in (l+1)×m steps.  

In the same way, the EM algorithm is trained to learn the fertility parameter in the 
model-3. For training, we use four parameters. Translation and distortion parameters 
are taken from the model-2. Initial fertility parameter and reverse distortion parameter 
for model-3 are generated from model-2 to model-3 as an intermediate step. Thus, to 
train the model, we use expected fertility, distortion, reverse distortion and translation 
counts. In each iteration, these counts are estimated and re-estimated (maximized). 

After certain number of iterations (set to 5 in our experiments) we will get the final 
four parameters. The best (Viterbi) alignment can be calculated as:  

))|(),,|max(arg],,,[1 iji
m
j ehTmljDmljia
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6.1 Dice coefficient and Alignment search Optimization 

To get better alignments from the above parameters we use the Dice coefficient to 
eliminate invalid alignments, i.e., the alignments whose Dice coefficient value is low. 
The Dice co-efficient is defined as:  

count(h) count(e)

h) count(e,  2  
h) (e,t coefficien Dice

 

(11)

  

We use the following modified Viterbi value to eliminate the low probability 
alignments, thereby increasing the word alignment accuracy:  

Modified Viterbi value = alignment value [i, j, l, m] + Dice coefficient (ei, hj) (12)

  

In other words, the Dice coefficient can be used as another parameter to get the 
best word-alignment in unsupervised learning. 



6.2 Morph Analyzer for Better Word Co-occurrence Learning 

Since one word can have many forms, it may be possible to improve the learning 
of co-occurrence information if we lemmatize the words in SL and TL corpora using 
a morphological analyzer. Such preprocessing for obtaining the root forms can be 
extremely useful, particularly for Indian languages because they are morphologically 
rich. We also present the results after using the morph analyzer as shown in table-4. 
There was a significant improvement in alignment accuracy in this case. 

The examples below show the lemmatized forms of English and Hindi words after 
using morph analyzers for removing suffixes:  

Inernationalization           ?        International    +   ization 

                                                       (root)                  (suffix) 

antharjAthIyaakaranaM   ?       antharjAthIya   +   karanaM    

             (root)                  (suffix) 

went   ?            go                +   Past Tense    

             (root)             +    morph 

gayA   ?             jA               +    wA/ wI    

              (root)            +    morph 

6.3 Dictionary and Cognates List for Initialization of the EM algorithm 

We have used Shabdaanjali dictionary (bilingual English-Hindi dictionary) which 
consists of 27,000 word to word translations. We have the dictionary (in the English-
Hindi experiments) along with the cognates list as an initialization step for the EM 
algorithm, to improve the word alignment accuracy. We generated cognates list by 
using a phonetic mapping technique [21, 22] from the ERDC (C-DAC, NOIDA) 
English to Hindi parallel corpora of 50,000 sentences. 

7. Data and Methodology for Evaluation 

We used the English-Hindi corpus (50,000 sentence pairs) to obtain the similarity 
measure the similarity of SL and TL words given by the Dice co-efficient, which we 
have used in our model. This data was also used to train GIZA++. We compare our 
results with those given by GIZA++. For evaluation, we used 2,000 sentence pairs as 
the test data. We tested only on sentences which were at least 5 words long. 

We also evaluated our models using the English-French data from the bilingual 
word alignment workshop held at HLT-NAACL 2003 [16]. This data had 447 
manually word-aligned sentence pairs. We report the performance of our alignment 
models in terms of precision, recall, and alignment error rate (AER) defined as:   

Precision = |A n C| / |A| 



Recall = |A n C| / |C  

F-measure = 
recallprecision

recallprecision2  

AER = 1 - F-measure  

In these definitions, C denotes the set of correct manually annotated alignments 
and A denotes the set of alignments produced by the method under test. Following 
standard practice, we take AER, which is derived from F-measure, as the primary 
evaluation metric that we are attempting to optimize. 

8. Experimental Results 

Experiment-1 

This was a controlled experimented in which 100 sentence pairs were handcrafted so 
that there was no data sparsity problem, i.e., the data was designed to be good to learn 
from. The experiment was mainly meant to verify that our implementation is correct.  

Training data:  100 sentences of clean English-Hindi parallel corpora 
Testing data: 50 random (manually annotated) sentences from training data   

Our Model GIZA++ 
Precision 42.07 37.83 
Recall 49.25 47.14 
F-Measure 45.38 41.97 
AER                 54.62 58.12 

Table 1. Results of experiment-1 (controlled experiment)  

Experiment-2 

Data: 447 English-French sentences from the NAACL-2003 shared task data   

Our Model GIZA++ 
Precision 38.16 58.97 
Recall 16.36 25.29 
F-Measure 22.90 35.35 
AER                 77.10 64.65 

Table 2. Results of eperiment-2 (English-French) 

Experiment-3 

Training data: 2,000 sentences 
Testing data: 100 sentences 



  
Our Model GIZA++ Our Model with 

Cognate List 
Precision 27.55 42.73 31.50 
Recall 27.13 50.97 33.23 
F-Measure 27.43 46.49 32.34 
AER 72.66 53.51 67.66 

Table 3. Results of eperiment-3 (Hindi-Bengali with cognates). 

Experiment-4 

Trained on: 7399 sentences 
Tested on: 1600 sentences 
English-Hindi vocabulary size: 50,000 approximately 
Number of cognates: 24,000 approximately  

Experimental Setups: 

S1 is Our Model 
S2 is Our Model + Dice Co-efficient 
S3 is Our Model + Dice Co-efficient + Morph 
S4 is Our Model + Dice Co-efficient + Morph + Cognates 
S5 is Our Model + Dice Co-efficient + Morph + Cognates + Bilingual Dictionary   

S1 S2 S3 S4 S5 GIZA++ 
  Precision

 

15.79 18.03 24.22 24.97 28.99 36.91 
  Recall

 

20.15 23.12 27.58 28.42 32.39 38.57 
 F-measure  17.70 20.26 25.79 26.58 30.59 37.72 
  AER

 

82.30 79.73 74.21 73.42 69.41 62.38 

Table 4. Results of Experiment-4 (English-Hindi, using the Dice co-efficient, cognates, 
morphological analyzer and a bilingual dictionary). 

9. Some Comments about the Results 

As can be seen from the results above, the performance of our implementation is 
lower in all cases (except in the first experiment) than that of GIZA++. This is true 
even when we use a cognate list. However, two things may be noted here. 

First, our implementation is meant to be a starting point for developing new 
algorithms, either by ourselves or by others. The performance right now was bound to 
be lower because GIZA++ uses model-4 also, along with many other optimizations 
and smoothing techniques. The results of the first (controlled) experiment indicate 
that our implementation works well when the data is good for learning, i.e., when 



there is less data sparsity. This implies that we need to add some techniques to take 
care of the data sparsity problem. 

Second, it is quite clear that there is a noticeable increase in performance when we 
use a cognate list. The fact that the performance was higher in the first experiment 
shows that our implementation is indeed working, but as the results for other 
experiments show, GIZA++ is better able to learn from larger data and is able to 
overcome data sparsity problem to a greater extent. 

Since this is an ongoing work, we will be adding several new features, which are 
likely to increase the performance significantly. Even with performance comparable 
to or slightly lower than GIZA++, our implementation will be useful to community of 
NLP researchers, especially those who are working on Indian languages. 

The results for the third experiment (Hindi-Bengali) show our method works better 
for when both the languages are Indian languages. This is mainly because of the 
common words as mentioned earlier as we have used a cognate list to take care of 
borrowed and inherited words. 

10. Conclusions and Future Work 

We have implemented the first three IBM models in JAVA in the form of an API. We 
can issue a query to get any parameter or results from the IBM models. We also added 
the Dice coefficient similarity measure as a parameter to the EM algorithm to improve 
the word alignment accuracy. We briefly described the first three IBM models. We 
conducted four experiments, out of which the first one was a controlled experiment. 
The results we achieved were lower than those obtained with GIZA++ in all the 
experiments except the first. We discussed the reasons and implications of these 
results. For example, GIZA++ uses the first four IBM models while we use only the 
first three. Moreover, GIZA++ also uses optimization and smoothing techniques. 
Also, our implementation is meant to be a starting point for developing an API for 
NLP researchers willing to use the IBM models in some way, rather than just an 
alignment tool. However, the results for Hindi-Bengali were comparatively much 
better, which shows that using a cognate list is increasing the performance 
significantly. In future, we will work on removing the limitations of our 
implementation by including the model-4, using optimization and smoothing 
techniques and adding some more features for Indian languages. Another important 
work for the future is to take care of the compounding problem in Indian languages, 
which is a major reason for low performance with Indian languages. 
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